Все о моделировании в Компас-3D LT
   Главная Статьи Файлы Форум Ссылки Категории новостей
Ноябрь 24 2017 10:36:21   
Навигация
Главная
Статьи
Файлы
FAQ
Форум
Ссылки
Категории новостей
Обратная связь
Фото галерея
Поиск
Разное
Карта Сайта
Популярные статьи
Что необходимо ... 65535
4.12.1 Професси... 21436
Примеры, синони... 20623
FAST (методика ... 17959
Просмотр готовы... 17741
Декартовы коорд... 15165
Просмотр готовы... 14501
Учимся удалять!... 14091
Работа с инстру... 10986
Что такое САПР 10475
Сейчас на сайте
Гостей: 1
На сайте нет зарегистрированных пользователей

Пользователей: 9,955
новичок: Logyattella
Друзья сайта
Ramblers Top100
Рейтинг@Mail.ru

Реклама
Выполняем курсовые и лабораторные по разным языкам программирования
Подробнее - курсовые и лабораторные на заказ по Delphi
Turbo Pascal, Assembler, C, C++, C#, Visual Basic, Java, GPSS, Prolog
11.2.2 Разделение памяти

где size — объем области в байтах. Ядро использует key для ведения поиска в таблице разделяемой памяти: если подходящая запись обнаружена и если разрешение на доступ имеется, ядро возвращает вызывающему процессу указанный в записи дескриптор. Если запись не найдена и если пользователь установил флаг IPC_CREAT, указывающий на необходимость создания новой области, ядро проверяет нахождение размера области в установленных системой пределах и выделяет область по алгоритму allocreg (раздел 6.5.2). Ядро записывает установки прав доступа, размер области и указатель на соответствующую запись таблицы областей в таблицу разделяемой памяти (Рисунок 11.9) и устанавливает флаг, свидетельствующий о том, что с областью не связана отдельная память. Области выделяется память (таблицы страниц и т. п.) только тогда, когда процесс присоединяет область к своему адресному пространству. Ядро устанавливает также флаг, говорящий о том, что по завершении последнего связанного с областью процесса область не должна освобождаться. Таким образом, данные в разделяемой памяти остаются в сохранности, даже если она не принадлежит ни одному из процессов (как часть виртуального адресного пространства последнего).
Рисунок 11.9. Структуры данных, используемые при разделении памяти
Процесс присоединяет область разделяемой памяти к своему виртуальному адресному пространству с помощью системной функции shmat:
virtaddr = shmat(id, addr, flags);
Значение id, возвращаемое функцией shmget, идентифицирует область разделяемой памяти, addr является виртуальным адресом, по которому пользователь хочет подключить область, а с помощью флагов (flags) можно указать, предназначена ли область только для чтения и нужно ли ядру округлять значение указанного пользователем адреса. Возвращаемое функцией значение, virtaddr, представляет собой виртуальный адрес, по которому ядро произвело подключение области и который не всегда совпадает с адресом, указанным пользователем.
В начале выполнения системной функции shmat ядро проверяет наличие у процесса необходимых прав доступа к области (Рисунок 11.10). Оно исследует указанный пользователем адрес; если он равен 0, ядро выбирает виртуальный адрес по своему усмотрению.
Область разделяемой памяти не должна пересекаться в виртуальном адресном пространстве процесса с другими областями; следовательно, ее выбор должен производиться разумно и осторожно. Так, например, процесс может увеличить размер принадлежащей ему области данных с помощью системной функции brk, и новая область данных будет содержать адреса, смежные с прежней областью; поэтому, ядру не следует присоединять область разделяемой памяти слишком близко к области данных процесса. Так же не следует размещать область разделяемой памяти вблизи от вершины стека, чтобы стек при своем последующем увеличении не залезал за ее пределы. Если, например, стек растет в направлении увеличения адресов, лучше всего разместить область разделяемой памяти непосредственно перед началом области стека.
алгоритм shmat /* подключить разделяемую память */
входная информация:
(1) дескриптор области разделяемой памяти
(2) виртуальный адрес для подключения области
(3) флаги
выходная информация: виртуальный адрес, по которому область подключена фактически
{
проверить правильность указания дескриптора, права доступа к области;
if (пользователь указал виртуальный адрес) {
округлить виртуальный адрес в соответствии с флагами;
проверить существование полученного адреса, размер области;
}
else /* пользователь хочет, чтобы ядро само нашло подходящий адрес */
ядро выбирает адрес: в случае неудачи выдается ошибка;
присоединить область к адресному пространству процесса (алгоритм attachreg);
if (область присоединяется впервые)
выделить таблицы страниц и отвести память под нее (алгоритм growreg);
return (виртуальный адрес фактического присоединения области);
}
Рисунок 11.10. Алгоритм присоединения разделяемой памяти
Ядро проверяет возможность размещения области разделяемой памяти в адресном пространстве процесса и присоединяет ее с помощью алгоритма attachreg. Если вызывающий процесс является первым процессом, который присоединяет область, ядро выделяет для области все необходимые таблицы, используя алгоритм growreg, записывает время присоединения в соответствующее поле таблицы разделяемой памяти и возвращает процессу виртуальный адрес, по которому область была им подключена фактически.
Отсоединение области разделяемой памяти от виртуального адресного пространства процесса выполняет функция
shmdt(addr)
где addr — виртуальный адрес, возвращенный функцией shmat. Несмотря на то, что более логичной представляется передача идентификатора, процесс использует виртуальный адрес разделяемой памяти, поскольку одна и та же область разделяемой памяти может быть подключена к адресному пространству процесса несколько раз, к тому же ее идентификатор может быть удален из системы. Ядро производит поиск области по указанному адресу и отсоединяет ее от адресного пространства процесса, используя алгоритм detachreg (раздел 6.5.7). Поскольку в таблицах областей отсутствуют обратные указатели на таблицу разделяемой памяти, ядру приходится просматривать таблицу разделяемой памяти в поисках записи, указывающей на данную область, и записывать в соответствующее поле время последнего отключения области.
Рассмотрим программу, представленную на Рисунке 11.11. В ней описывается процесс, создающий область разделяемой памяти размером 128 Кбайт и дважды присоединяющий ее к своему адресному пространству по разным виртуальным адресам. В "первую" область он записывает данные, а читает их из "второй" области. На Рисунке 11.12 показан другой процесс, присоединяющий ту же область (он получает только 64 Кбайта, таким образом, каждый процесс может использовать разный объем области разделяемой памяти); он ждет момента, когда первый процесс запишет в первое принадлежащее области слово любое отличное от нуля значение, и затем принимается считывать данные из области. Первый процесс делает "паузу" (pause), предоставляя второму процессу возможность выполнения; когда первый процесс принимает сигнал, он удаляет область разделяемой памяти из системы.
Процесс запрашивает информацию о состоянии области разделяемой памяти и производит установку параметров для нее с помощью системной функции shmctl:
shmctl(id, cmd, shmstatbuf);
Значение id идентифицирует запись таблицы разделяемой памяти, cmd определяет тип операции, а shmstatbuf является адресом пользовательской структуры, в которую помещается информация о состоянии области. Ядро трактует тип операции точно так же, как и при управлении сообщениями. Удаляя область разделяемой памяти, ядро освобождает соответствующую ей запись в таблице разделяемой памяти и просматривает таблицу областей: если область не была присоединена ни к одному из процессов, ядро освобождает запись таблицы и все выделенные области ресурсы, используя для этого алгоритм freereg (раздел 6.5.6). Если же область по-прежнему подключена к каким-то процессам (значение счетчика ссылок на нее больше 0), ядро только сбрасывает флаг, говорящий о том, что по завершении последнего связанного с нею процесса область не должна освобождаться. Процессы, уже использующие область разделяемой памяти, продолжают работать с ней, новые же процессы не могут присоединить ее. Когда все процессы отключат область, ядро освободит ее.
Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, залогиньтесь или зарегистрируйтесь для голосования.

Нет данных для оценки.
Гость
Имя

Пароль



Вы не зарегистрированны?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.
Случайные статьи
История развития т...
Глава 6. Подключен...
Глава 8. Acer n35
Принцип 5. Уменьша...
Преимущества испол...
Технические характ...
3.5 ПРЕИМУЩЕСТВА ...
Радиосеть IEEE 802...
Введение
Страница «Карта»
Глава 12. BOTTOM L...
Топология “звезда”
6.5.7 Отсоединение...
Глава 4. Векторна...
4. Разработка инфо...
Среда передачи данных
Вместо заключения
Режим GPS
7.2. Интерпретация...
Терминология
ПРЕДИСЛОВИЕ
2.2.1 Обзор особен...
5.15 LINК
ЦЕЛИ КАЖДОЙ ГРУ...
Канал передачи данных
2.3.3.3 Импульсная...
2.4.9 Свёрточные коды
ГЛАВА 6. СТРУКТУРА...
12.1 ПРОБЛЕМЫ, СВ...
5.2 READ
Проверка внедрения
9.2.1.1 Функция fo...
Присвоение наимено...
Отображение модели...
Синтаксис
ПРЕДИСЛОВИЕ
11.2.2 Разделение ...
Настройка сетевых ...
ГЛАВА 5. БУДУЩИЕ ...
Программное обеспе...
Мини-чат
Вам необходимо залогиниться.

Нет присланных сообщений.
Copyright © 2009