Популярные статьи | |
Сейчас на сайте | Гостей: 10
На сайте нет зарегистрированных пользователей
Пользователей: 9,955
новичок: Logyattella
|
|
Индукция Джона Стюарта Милля |
В процессе наблюдения за окружающим миром мы решаем две главные задачи, связанные с созданием модели, его описывающей. Прежде всего мы выделяем в наблюдаемом некоторые сущности. В логике им соответствуют некоторые понятия. А кроме того, мы устанавливаем между этими понятиями определенные отношения. Эти отношения могут быть как наблюдаемыми непосредственно с помощью наших органов чувств (например, отношения типа «субъект-действие» или «быть раньше»), так и достраиваемыми на основании некоторой «логики знаний» (например, отношения типа «причина – следствие» или «цель – средство»).
Среди всех этих отношений едва ли не главнейшую роль для познания окружающего мира играют каузальные отношения , отражающие в наиболее общей форме связи причин и следствий. Подробный разговор о каузальных связях мы отложим до конца этой главы. А пока поговорим лишь о том их виде, внимание к которому привлекли исследования английского логика середины XIX века Джона Стюарта Милля. Он поставил перед собой задачу нахождения связей между фактами и явлениями на основе анализа их совместного появления или непоявления в последовательности экспериментов. При этом он принял меры к тому, чтобы не повторять знаменитой ошибки при установлении причинно-следственных связей, которая вошла в историю науки под названием Post hoc ergo propter hoc, т.е. «После этого, значит вследствие этого». А ошибки такого типа не только встречались и встречаются в бытовых человеческих рассуждениях до сих пор, но иногда подобные выводы делаются сознательно, например, для создания неожиданных поэтических образов. Вот как превосходно использовал этот прием В. Луговской: «Речные девки в речках мочут косы, и над Русью от этого подъемлется туман».
Принципы установления причинно-следственных отношений, которые предложил Милль, основываются на идеях выделения сходства и различия в наблюдаемых ситуациях внешнего мира.
Способность улавливать сходство и выделять различия – фундаментальная способность, по-видимому, всех живых существ. Опираясь на эту способность, Милль сформулировал свои принципы индукции.
Первым из них является Принцип единственного различия . В формулировке, которая дана в известном учебнике логики В. Минто, он звучит следующим образом: «Если после введения какого-либо фактора появляется, или после удаления его исчезает, известное явление, причем мы не вводим и не удаляем никакого другого обстоятельства, которое могло бы иметь в данном случае влияние, и не производим никакого изменения среди первоначальных условий явления, то указанный фактор и составляет причину явления».
Схематически этот принцип можно описать в виде следующей схемы:
Здесь знак
трактуется лишь как появление d при наличии а , b и c , а
означает, что d не появляется. Повторение ситуаций n раз необходимо для того, чтобы убедиться в устойчивости всей ситуации в целом, для исключения случая, когда d появляется случайным образом, не будучи никак связанным с а . Если n , с точки зрения экспериментатора, достаточно для уверенного вывода, то, используя Принцип единственного различия, можно утверждать, что а является причиной, a d следствием, т.е. что между a и d имеет место причинно-следственное отношение. В дальнейшем будем называть реализации a , b , c
d положительными примерами для d , а реализации b , c
d – отрицательными примерами для d или контрпримерами .
Второй основополагающий принцип индуктивного рассуждения Милля носит название Принципа единственного сходства . В формулировке того же В. Минто он звучит следующим образом: «Если все обстоятельства явления, кроме одного, могут отсутствовать, не уничтожая этим явления, то это одно обстоятельство находится в отношении причинной связи с явлением при условии, что приняты были все меры к тому, чтобы никаких других обстоятельств, кроме принятых во внимание, налицо не оказалось».
Схематическое представление этого принципа Милля выглядит следующим образом:
В этой схеме все примеры являются положительными. Из нее по Принципу единственного сходства вытекает, что a и d связаны причинно-следственным отношением.
Еще один принцип Милля – Принцип единственного остатка . Он формулируется В. Минто следующим образом: «Если вычесть из какого-либо явления ту часть его, которая согласно прежним исследованиям оказывается следствием известных причин, присутствующих в явлении причин, то остаток явления есть следствие остальных причин».
Принцип единственного остатка можно проиллюстрировать следующей схемой:
Следовательно, a и d связаны причинно-следственным отношением, а b и с являются возможными причинами е . Для дальнейшего уточнения зависимости надо посмотреть, приводит ли исключение b к появлению e . Если приводит, то отношением «причина – следствие» связаны между собой с и е . В противном случае это отношение имеется между b и е .
Отметим ряд особенностей схем Милля. Прежде всего, они справедливы лишь при условии, что в описании ситуации имеется полное множество наблюдаемых фактов или явлений. Например, в последнем случае может оказаться, что и исключение b , и исключение с не влияют на появление е . Тогда можно предположить, что для появления е необходимо либо одновременное наличие b и с , либо е вызывается чем-то, не вошедшим в описание ситуации.
Другими словами, появление некоторого элемента ситуации может определяться не отдельными факторами или элементами, а их совокупностью, задаваемой с помощью сложного логического выражения. В левой части причинно-следственного отношения может стоять сложное выражение, в котором отдельные элементы могут быть связаны между собой конъюнктивными и (или) дизъюнктивными связками.
Проиллюстрируем это на следующих примерах. В качестве первого примера рассмотрим ситуации, показанные на рис. 20. С ними связана следующая история. Когда некий человек встречает на улице необычных зверюшек, то, глядя на них, он или радуется, или печалится. Нас интересует, какие качества зверюшек приводят человека в хорошее расположение духа. Другими словами, что является причиной его улыбки. Для удобства ответа на этот вопрос на рис. 20 положительные примеры и контрпримеры разделены штриховой чертой.
Рис. 20.
Как видно из рисунка, зверюшки обладают тремя признаками: формой спины, числом ног и формой ног. Что же вызывает улыбку? Используем метод Милля. Возьмем в качестве первой возможной причины форму спины у зверюшки. Положительные примеры таковы, что во всех наблюдаемых случаях эта форма выгнута вниз. Обозначим этот признак через a , а реакцию человека, когда он радуется, через d . Можно ли утверждать, что а есть причина d ? Согласно Принципу единственного сходства наличие спины такой формы должно всегда вызывать улыбку. Но первый же контрпример опровергает это. Число ног (обозначим этот признак как b ) также не может быть причиной улыбки. В положительных примерах b везде равно двум, и можно подумать, что именно две ноги зверюшки веселят человека. Но в трех контрпримерах ног тоже две. С формой ног (этот признак обозначим как с ) ситуация в положительных примерах такова, что сразу ясно, что с не может быть причиной d .
Таким образом, ни один из признаков зверюшки по отдельности не может быть причиной улыбки человека. Попробуем выделить общее ядро сходства у всех зверюшек в положительных примерах. Такое ядро есть. Все зверюшки в этих примерах имеют выгнутую вниз спину и две ноги. Другими словами, для них всегда истинно утверждение Р 1 ( а )& Р 2 ( b ), в котором Р 1 ( а ) – предикат, интерпретируемый как «форма спины, выгнутая вниз», а Р 2 ( b ) – предикат, интерпретируемый как «число ног равно двум». Проверим, будет ли истинным выделенное ядро в отрицательных примерах. Простой проверкой убеждаемся, что оно везде ложно. Таким образом, причина улыбки человека найдена. Она возникает тогда и только тогда, когда встреченная им зверюшка имеет выгнутую вниз спину и две ноги.
Приведенный пример показывает, что при использовании методов индуктивных рассуждений, которые предложил Милль, весьма важную роль играет способ выделения признаков или фактов, с помощью которых описываются ситуации.
Еще один пример связан с ситуациями, показанными на рис. 21. Теперь нас беспокоит реакция зверюшки на тех людей, которых она встречает на улице. У зверюшки хорошее настроение, когда она встречает людей с выражением на лице, как в положительных примерах. И ее настроение становится плохим, когда ей встречаются люди с такими лицами, как на отрицательных примерах. Возникает вопрос о причине появления у зверюшки хорошего настроения при встрече с людьми. Три элемента лица: рот, нос и глаза, полностью характеризуют выражение человеческого лица. Будем обозначать эти признаки как е , ? и g , а реакцию зверюшки как h . Поскольку все признаки принимают только два значения, как и реакция зверюшки, то можно (это можно было сделать и в предыдущем примере, но было желание продемонстрировать общий подход, использующий запись в виде предикатных формул) обойтись формулами исчисления высказываний. Будем считать, что е , ? и g истинны, если они соответствуют типу рта, носа и глаз человека из первого положительного примера. Будем также считать истинным значение h , соответствующее зверюшке с хорошим настроением. Если выделить ядро сходства у положительных примеров, то оно окажется пустым. Это свидетельствует о том, что причиной хорошего настроения зверюшки не может быть просто конъюнкция каких-то признаков человеческого лица. Выражение причины через признаки должно использовать дизъюнкцию.
Рис. 21.
В этом случае надо попытаться найти частные ядра сходства и попробовать объединить их в причину через операцию дизъюнкции. Выделим все попарные общие признаки у лиц, входящих в положительные примеры. Первое и второе лицо имеют общую часть е , первое и третье – ?, а второе и третье –
. Проверяем, какое из полученных выражений является ложным на всех контрпримерах. Таковым оказывается лишь е . Значит, е должно войти в выражение для причины хорошего настроения зверюшки. Но только два первых положительных примера характеризуются истинным е . Третий положительный пример портит все дело.
Для того чтобы учесть третий пример, надо построить общее ядро различия для него и лиц, входящих в отрицательные примеры. Сразу видно, что форма рта тут не поможет. Остаются нос и глаза. Нос и глаза такой формы, как в третьем положительном примере, можно по отдельности найти в отрицательных примерах. Но их комбинация, характерная для третьего положительного примера (при принятых нами обозначениях эта комбинация описывается формулой ?&
g ), нигде не встречается в отрицательных примерах. Это позволяет, наконец, написать выражение для причины h в следующей форме: h =( e
(?&
g )). Словесно эта причинно-следственная связь может быть описана следующим образом: зверюшка находится в хорошем настроении, если она встречает человека, рот у которого печален (концы губ опущены вниз) или глаза у него закрыты, а нос тонкий и прямой.
Попробуем теперь найти причину, когда зверюшка бывает в плохом настроении. Обратимся для этого к отрицательным примерам и попробуем на них выделить общее ядро сходства. Оно легко обнаруживается. Это
е . Но, к сожалению, в качестве причины плохого настроения зверюшки его использовать нельзя. Все тот же третий положительный пример препятствует этому. Значит, и для причины плохого настроения зверюшки надо искать дизъюнктивное выражение. Найдем частные попарные ядра сходства. Для первого и второго отрицательных примеров это ядро есть
e & g , для первого и третьего –
е , а для второго и третьего –
e &
?. Второе частное ядро сходства совпадает с общим ядром сходства и поэтому интереса не представляет. Два других частных ядра сходства на всех лицах положительных примеров оказываются ложными. Это позволяет записать выражение для причины плохого настроения зверюшки в следующей форме: h’ =((
e & g )
(
e &
?). Учитывая справедливость дистрибутивных законов для конъюнкции относительно дизъюнкции и наоборот (читатели могут проверить этот факт, так как им известно, как проверять в исчислении высказываний равенство ? 1 =? 2 ), можно записать выражение для причины плохого настроения зверюшки в более коротком виде: h’ =(
e &( g
?)). Словесно эта причина может быть сформулирована следующим образом: если рот человека улыбается и глаза широко открыты или нос его по форме напоминает картошку, то зверюшка впадает в плохое настроение.
Если составить таблицу, в которой перечислены все комбинации истины и лжи для е , ? и g , и определить истинность h и h’ , то можно убедиться, что h’ =
h . Другими словами, если h истинно, то зверюшка находится в хорошем настроении, а если h ложно, то в плохом. Это означает, что вместо двух выражений для h и h’ можно пользоваться только одним из них.
Такая ситуация не является стопроцентной. На рис. 22 мы снова встречаемся с известной нам зверюшкой. Но здесь выражения для h и h’ , легко вычисляемые с помощью общих ядер сходства, имеют вид h = e &
g и h’ = g &
e . Другими словами, зверюшка в хорошем настроении, когда встречает человека с печальным ртом, и она печалится, когда видит человека с широко открытыми глазами. В этом случае h и h’ никак не связаны между собой.
Чем различаются два рассмотренных случая? Пусть на пути нашей зверюшки встретился человек с лицом, обведённым на рис. 21 и 22 в рамочку. Как среагирует на него зверюшка? В случае, показанном на рис. 21, она тут же перейдет в хорошее настроение, ибо h истинно, а h’ , естественно, ложно. Но в случае, соответствующем рис. 22, ситуация для зверюшки становится весьма сложной. Для встретившегося ей персонажа h и h’ одновременно ложны. Возникает конфликт. Новый персонаж не укладывается в ту классификацию, которая была построена по положительным и отрицательным примерам. Конфликт для зверюшки неразрешим.
Рис. 22.
Его можно разрешить лишь волевым усилием. Надо включить новый персонаж в число либо положительных, либо отрицательных примеров. В реалии разбиение чего-либо на классы (в наших случаях на два класса) вытекает из каких-то прагматических требований. Например, все люди, отнесенные к положительным примерам, относятся к зверюшке доброжелательно. Их не нужно опасаться. А люди, относимые к группе отрицательных примеров, таковы, что лучше обойти их стороной. От них ждать добра не приходится. Тогда волевое отнесение нового персонажа к той или иной категории должно получить практическое подтверждение своей правильности или неправильности. Если встреча с ним для зверюшки окажется благоприятной, то его, конечно, надо относить к положительным примерам. В противном случае его место среди отрицательных примеров.
Мы продемонстрировали весьма важное положение, связанное с процессом индуктивного обобщения. Если h и h’ классифицируют множества положительных и отрицательных примеров, так что h =
h’ , то появление новых примеров не ставит систему в тупик. Она всегда куда-то отнесет новый случай, т. е, при выполнении указанного равенства система обладает полнотой классификации. Конечно, может оказаться, что эта классификация не является правильной. Ведь она построена по неполному множеству представителей положительного и отрицательного классов.
Пусть, например, мы снова имеем классификацию, которая соответствует ситуациям, показанным на рис. 21. Но контрольный пример поступает в систему с указанием, что он относится к группе отрицательных примеров. А система в соответствии с ранее построенной классификацией относит его к положительному классу. В таком случае необходимо внести коррективы в классификацию, полученную ранее, выработать новую классификацию с учетом нового множества отрицательных примеров.
Вывод из этого только один. Поскольку множества положительных и отрицательных примеров не охватывают всех возможных случаев, то h и h’ , построенные по методам Милля, даже в тех случаях, когда h =
h’ не могут быть абсолютно точными. Эти утверждения могут быть приняты лишь с некоторой оценкой истинности Q ( h ) (соответственно Q ( h’ )). Но прежде чем описать, как эти оценки вычисляются, рассмотрим еще один метод правдоподобных рассуждений. |
|
Комментарии |
Добавить комментарий |
Пожалуйста залогиньтесь для добавления комментария.
|
Рейтинги |
Рейтинг доступен только для пользователей.
Пожалуйста, залогиньтесь или зарегистрируйтесь для голосования.
Нет данных для оценки.
|
|
Гость |
Вы не зарегистрированны? Нажмите здесь для регистрации.
Забыли пароль? Запросите новый здесь.
|
Мини-чат | Вам необходимо залогиниться.
Нет присланных сообщений.
|
|