Все о моделировании в Компас-3D LT
   Главная Статьи Файлы Форум Ссылки Категории новостей
January 18 2026 04:05:13   
Навигация
Главная
Статьи
Файлы
FAQ
Форум
Ссылки
Категории новостей
Обратная связь
Фото галерея
Поиск
Разное
Карта Сайта
Популярные статьи
Что необходимо ... 65535
4.12.1 Професси... 36112
Учимся удалять!... 32996
Примеры, синони... 24204
Декартовы коорд... 23592
Просмотр готовы... 23539
FAST (методика ... 22270
содержание - се... 21619
Просмотр готовы... 20521
Работа с инстру... 16015
Сейчас на сайте
Гостей: 1
На сайте нет зарегистрированных пользователей

Пользователей: 9,955
новичок: Logyattella
Друзья сайта
Ramblers Top100
Рейтинг@Mail.ru

Реклама
Выполняем курсовые и лабораторные по разным языкам программирования
Подробнее - курсовые и лабораторные на заказ по Delphi
Turbo Pascal, Assembler, C, C++, C#, Visual Basic, Java, GPSS, Prolog
2.4.7.4 Построение циклических кодов
Существует несколько различных способов кодирования. Принципиально наиболее просто комбинации циклического кода можно получить, умножая многочлен (х), соответствующий комбинациям без избыточного кода, на образующий многочлен кода g(x). Такой способ легко реализуется. Однако он имеет тот существенный недостаток, что получающиеся в результате умножения комбинации не содержат информационные символы в явном виде.
Применительно к циклическим кодам принято отводить под информационные k символов, соответствующих старшим степеням многочлена кода, а под проверочные – (n – к) – символов низших разрядов. Чтобы получить такой код, применяется следующая процедура кодирования. Многочлен (х), соответствующий k-разрядной кодовой комбинации без избыточного кода, умножается на хm, где m=n-k. Степень многочлена (х) увеличивается, что по отношению к комбинации кода означает необходимость приписать со стороны младших разрядов m нулей. Произведение (х)*хm делим на образующий многочлен g(x). В общем случае при этом получаем некоторое частное q(x) и остаток r(x). Последний прибавляется к (х)*хm . В результате получается многочлен:

. (2.4.24)

Поскольку степень g(x) равна m, то степень остатка r(x) не превысит m-1. Следовательно, операция сложения равносильна приписыванию r(x) к (х) со стороны младших разрядов. Покажем, что f(x) делится на g(x) без остатка, то есть является многочленом кода. Действительно,

. (2.4.25)

Перенесём r(x) в левую часть:

, (2.4.26)

что и требовалось доказать.
Пример: получить циклический код числа 88h
g(x)= х4+х+1 10011



Существуют различные разновидности циклических кодов, способных обнаруживать и исправлять независимые ошибки произвольной кратности (коды Боуза – Гоудхури – Хоквингема), и коды, обнаруживающие и исправляющие пачки ошибок (коды Бартона, Файра, и Рида – Соломона).
Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, залогиньтесь или зарегистрируйтесь для голосования.

Нет данных для оценки.
Гость
Имя

Пароль



Вы не зарегистрированны?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.
Случайные статьи
Дуги в уникальных ...
8.3.1 Перезапуск ч...
Глава первая. У ИС...
Шинная топология
Глава 4. Основные ...
Текст
2.2. Понимание ко...
Глава 1. Ноутбук ...
ГЛАВА 6. СТРУКТУРА...
3. Обзор концепции...
6.6.2 Алгоритмы пр...
Программы, не подд...
Принцип 5. Уменьша...
Глава третья
Релевантность
Экран
2.4.9 Свёрточные коды
О книге
ИДЕНТИФИКАЦИЯ СУЩН...
Убирайте повторяющ...
Глава 9. Реальный GPS
4.5 Управление пот...
Глава 3. Как выбр...
Примеры и идентифи...
2.3.3.4 Импульсно-...
3. Выделение в орг...
3.1.4. Определение...
2.3. Представление...
6.4.5 Копирование ...
Терминология
Самые продаваемые ...
7.4.3. Независимос...
Глава 7. Использов...
Глава 2. GARMIN ST...
9.2.3.1 Обработка...
12.3 СЕМАФОРЫ
4.1.1 Определение
Основные характери...
Отзывы о книге Сет...
Технология совмест...
Мини-чат
Вам необходимо залогиниться.

Нет присланных сообщений.
Copyright © 2009