Все о моделировании в Компас-3D LT
   Главная Статьи Файлы Форум Ссылки Категории новостей
Сентябрь 23 2017 15:47:29   
Навигация
Главная
Статьи
Файлы
FAQ
Форум
Ссылки
Категории новостей
Обратная связь
Фото галерея
Поиск
Разное
Карта Сайта
Популярные статьи
Что необходимо ... 65535
4.12.1 Професси... 21380
Примеры, синони... 20585
FAST (методика ... 17846
Просмотр готовы... 17626
Декартовы коорд... 14970
Просмотр готовы... 14416
Учимся удалять!... 13153
Работа с инстру... 10914
Что такое САПР 10383
Сейчас на сайте
Гостей: 1
На сайте нет зарегистрированных пользователей

Пользователей: 9,955
новичок: Logyattella
Друзья сайта
Ramblers Top100
Рейтинг@Mail.ru

Реклама
Выполняем курсовые и лабораторные по разным языкам программирования
Подробнее - курсовые и лабораторные на заказ по Delphi
Turbo Pascal, Assembler, C, C++, C#, Visual Basic, Java, GPSS, Prolog
ГЛАВА 13. РАСПРЕДЕЛЕННЫЕ СИСТЕМЫ
В предыдущей главе нами были рассмотрены сильносвязанные многопроцессорные системы с общей памятью, общими структурами данных ядра и общим пулом, из которого процессы вызываются на выполнение. Часто, однако, бывает желательно в целях обеспечения совместного использования ресурсов распределять процессоры таким образом, чтобы они были автономны от операционной среды и условий эксплуатации. Пусть, например, пользователю персональной ЭВМ нужно обратиться к файлам, находящимся на более крупной машине, но сохранить при этом контроль над персональной ЭВМ. Несмотря на то, что отдельные программы, такие как uucp, поддерживают передачу файлов по сети и другие сетевые функции, их использование не будет скрыто от пользователя, поскольку пользователь знает о том, что он работает в сети. Кроме того, надо заметить, что программы, подобные текстовым редакторам, с удаленными файлами, как с обычными, не работают. Пользователи должны располагать стандартным набором функций системы UNIX и, за исключением возможной потери в быстродействии, не должны ощущать пересечения машинных границ. Так, например, работа системных функций open и read с файлами на удаленных машинах не должна отличаться от их работы с файлами, принадлежащими локальным системам.
Архитектура распределенной системы представлена на Рисунке 13.1. Каждый компьютер, показанный на рисунке, является автономным модулем, состоящим из ЦП, памяти и периферийных устройств. Соответствие модели не нарушается даже несмотря на то, что компьютер не располагает локальной файловой системой: он должен иметь периферийные устройства для связи с другими машинами, а все принадлежащие ему файлы могут располагаться и на ином компьютере. Физическая память, доступная каждой машине, не зависит от процессов, выполняемых на других машинах. Этой особенностью распределенные системы отличаются от сильносвязанных многопроцессорных систем, рассмотренных в предыдущей главе. Соответственно, и ядро системы на каждой машине функционирует независимо от внешних условий эксплуатации распределенной среды.
Рисунок 13.1. Модель системы с распределенной архитектурой
Распределенные системы, хорошо описанные в литературе, традиционно делятся на следующие категории:
• периферийные системы, представляющие собой группы машин, отличающихся ярковыраженной общностью и связанных с одной (обычно более крупной) машиной. Периферийные процессоры делят свою нагрузку с центральным процессором и переадресовывают ему все обращения к операционной системе. Цель периферийной системы состоит в увеличении общей производительности сети и в предоставлении возможности выделения процессора одному процессу в операционной среде UNIX. Система запускается как отдельный модуль; в отличие от других моделей распределенных систем, периферийные системы не обладают реальной автономией, за исключением случаев, связанных с диспетчеризацией процессов и распределением локальной памяти.
• распределенные системы типа "Newcastle", позволяющие осуществлять дистанционную связь по именам удаленных файлов в библиотеке (название взято из статьи "The Newcastle Connection" — см. [Brownbridge 82]). Удаленные файлы имеют спецификацию (составное имя), которая в указании пути поиска содержит специальные символы или дополнительную компоненту имени, предшествующую корню файловой системы. Реализация этого метода не предполагает внесения изменений в ядро системы, вследствие этого он более прост, чем другие методы, рассматриваемые в этой главе, но менее гибок.
• абсолютно "прозрачные" распределенные системы, в которых для обращения к файлам, расположенным на других машинах, достаточно указания их стандартных составных имен; распознавание этих файлов как удаленных входит в обязанности ядра. Маршруты поиска файлов, указанные в их составных именах, пересекают машинные границы в точках монтирования, сколько бы таких точек ни было сформировано при монтировании файловых систем на дисках.
В настоящей главе мы рассмотрим архитектуру каждой модели; все приводимые сведения базируются не на результатах конкретных разработок, а на информации, публиковавшейся в различных технических статьях. При этом предполагается, что забота об адресации, маршрутизации, управлении потоками, обнаружении и исправлении ошибок возлагается на модули протоколов и драйверы устройств, другими словами, что каждая модель не зависит от используемой сети. Примеры использования системных функций, приводимые в следующем разделе для периферийных систем, работают аналогичным образом и для систем типа Newcastle и для абсолютно "прозрачных" систем, о которых пойдет речь позже; поэтому в деталях мы их рассмотрим один раз, а в разделах, посвященных другим типам систем, остановимся в основном на особенностях, отличающих эти модели от всех остальных.
Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, залогиньтесь или зарегистрируйтесь для голосования.

Нет данных для оценки.
Гость
Имя

Пароль



Вы не зарегистрированны?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.
Случайные статьи
1.7 Многоуровнева...
Creative MegaWorks...
1. Продукции типа...
Общение
1.4 ФУНКЦИИ ОПЕРАЦ...
Продукционные сис...
Datum
Своя игра
2. Продукции типа...
5.19 ВЫВОДЫ
Вывод на семантич...
Что такое интелле...
13.2 СВЯЗЬ ТИПА NE...
4.6 Протоколы и ин...
2.2.2 Электрически...
Глава пятая. ВЫВО...
Функциональный пример
7.2.1. Обязательс...
Принцип 1. Как мож...
Инвертированный си...
Использование подт...
Настройка (парамет...
Как «исправить» fi...
Библиографический ...
5.12.3 Чтение из к...
1.3. Обзор модели ...
Необычные дуги
3. Продукции типа...
Процессы управлени...
Сильные и направле...
О чем мы узнали ?
1.3.1 Первичная с...
11.5 ВЫВОДЫ
Простота работы и ...
Имена сущностей
Определение атрибута
ГЛАВА 12. МНОГОПРО...
Геометрия — некото...
содержание - сетев...
Характерис...
Мини-чат
Вам необходимо залогиниться.

Нет присланных сообщений.
Copyright © 2009