Популярные статьи | |
Сейчас на сайте | Гостей: 6
На сайте нет зарегистрированных пользователей
Пользователей: 9,955
новичок: Logyattella
|
|
Глава 2. Cистема позиционирования |
Очевидно, что любому человеку, сознательно или интуитивно, хочется знать, где он находится. В житейских случаях он задает свое местоположение относительно знакомых ему ориентиров. Например: «Я нахожусь по такому-то адресу». Или: «Я лечу где-то посередине между Жмеринкой и Парижем». Самой же универсальной формой задания местоположения, той, которой пользуются навигаторы и геодезисты, является использование какой-либо системы координат. Поэтому, прежде чем говорить о позиционировании, необходимо сказать о том, что такое координаты пункта в нашем понимании.
Рассмотрим геоцентрические системы координат. Их начало совпадает с центром (или, точнее говоря, с центром масс) Земли. Глобальная система позиционирования использует прямоугольную (декартову) систему X, Y, Z и эллипсоидальную систему B, L, H. Поясним, о каком эллипсоиде идет речь. Общеземной эллипсоид является самой простой в математическом смысле моделью Земли. Эллипсоид подбирают так, чтобы его поверхность как можно ближе подходила к поверхности геоида. Геоид можно представить себе как поверхность, совпадающую с невозмущенной поверхностью мирового океана и мысленно продолженную под материками. В строгом определении геоид — это уровневая поверхность, содержащая точку, принятую за начало отсчета высот. В России таковой является нуль-пункт кронштадтского футштока. Опорными плоскостями в рассматриваемых системах координат являются плоскость экватора и плоскость начального (гринвичского) меридиана. От экватора отсчитывают геодезические широты B. От Гринвича отсчитывают геодезические долготы L. Геодезические высоты H отсчитывают от поверхности эллипсоида по нормали. К этому же эллипсоиду относится и прямоугольная система координат. С осью суточного вращения Земли совпадает малая ось эллипсоида и ось Z, проходящая через северный полюс. Ось X является линией пересечения плоскости экватора и плоскости гринвичского меридиана. Ось Y также лежит в плоскости экватора. Системы спутниковой радионавигации не исключение. Рассмотрим несколько основополагающих идей.
А — местоопределение по расстоянию до спутников. Зная координаты навигационных спутников и умея измерять расстояние до них, определить координаты наблюдателя — дело техники. Например, если мы знаем, что от нас до навигационного спутника, скажем, 11 тыс. км, то это значит, что мы находимся где-то на воображаемой сфере радиусом в 11 тыс. км с центром, совпадающим с этим спутником. Если одновременно с этим расстояние до другого спутника составляет 12 тыс. км, то наше местоположение будет где-то на окружности, являющейся пересечением двух таких сфер. И, наконец, знание дальности до третьего спутника сократит количество возможных точек нашего местонахождения до двух, одна из которых будет находиться где-то далеко в космосе (и мы ее отбрасываем), а другая — на земле, рядом с нами.
Б — измерение расстояния до спутника. Школьная истина гласит: «расстояние есть скорость, умноженная на время движения». Навигационный приемник так и работает. Он измеряет время, за которое радиосигнал доходит от спутника до нас, а затем по этому времени вычисляет расстояние. Главной трудностью при измерении времени прохождения радиосигнала является точное выделение момента его передачи со спутника. Для этого на спутнике и в приемнике в одно и то же время генерируется одна и та же кодовая последовательность. Теперь остается только сравнить время их рассогласования, умножить его на скорость распространения радиоволн, и, казалось бы, дело в шляпе. Однако если спутник и приемник имеют расхождение временных шкал только в одну сотую секунды, то ошибка измерения расстояния составит около 3 тыс. км!
В — совершенная временная привязка. Чтобы избежать таких ошибок, на спутнике устанавливают атомные часы, точность которых составляет наносекунды, а стоимость — сотню тысяч долларов. Иметь такие же часы в приемнике — слишком дорогое удовольствие. Однако можно обойтись и простыми часами, если измерять дальность не до трех, а до четырех спутников. В этом случае четыре неточных измерения (с «расстроенными» часами) позволяют исключить относительное смещение шкалы времени приемника. И вот каким образом. Предположим, часы приемника несовершенны, не сверены с единым временем навигационной системы и отстают от него, например, на полсекунды. Если измерить время прохождения сигнала от четырех спутников и получить неистинные или псевдодальности до них, то окажется, что воображаемые сферы с радиусами, соответствующими этим псевдодальностям, не пересекаются в одной точке. Тогда для уточнения дальностей компьютер приемника прибавляет ко всем измерениям (или вычитает) некоторый один и тот же интервал времени до тех пор, пока не найдет решение, при котором все четыре воображаемые сферы пересекаются в одной точке.
Г — определение положения спутника в космическом пространстве. Чтобы все вышеизложенное успешно выполнялось, необходимо точно знать местоположение каждого навигационного спутника. Для этого, во-первых, спутники запускают на высокие орбиты (около 20 тыс. км), где движение стабильно и прогнозируемо с большой точностью. А во-вторых, незначительные изменения в орбитах постоянно отслеживаются. При этом сведения о местоположении спутника записываются в память бортового компьютера и затем передаются на приемник вместе с кодовой последовательностью. |
|
Комментарии |
Добавить комментарий |
Пожалуйста залогиньтесь для добавления комментария.
|
Рейтинги |
Рейтинг доступен только для пользователей.
Пожалуйста, залогиньтесь или зарегистрируйтесь для голосования.
Нет данных для оценки.
|
|
Гость |
Вы не зарегистрированны? Нажмите здесь для регистрации.
Забыли пароль? Запросите новый здесь.
|
Мини-чат | Вам необходимо залогиниться.
Нет присланных сообщений.
|
|