Все о моделировании в Компас-3D LT
   Главная Статьи Файлы Форум Ссылки Категории новостей
Июнь 26 2019 13:29:06   
Навигация
Главная
Статьи
Файлы
FAQ
Форум
Ссылки
Категории новостей
Обратная связь
Фото галерея
Поиск
Разное
Карта Сайта
Популярные статьи
Что необходимо ... 65535
Учимся удалять!... 23300
4.12.1 Професси... 22272
Примеры, синони... 21208
FAST (методика ... 19128
Просмотр готовы... 18869
Декартовы коорд... 17229
Просмотр готовы... 15664
Работа с инстру... 11830
Что такое САПР 11230
Сейчас на сайте
Гостей: 1
На сайте нет зарегистрированных пользователей

Пользователей: 9,955
новичок: Logyattella
Друзья сайта
Ramblers Top100
Рейтинг@Mail.ru

Реклама
Выполняем курсовые и лабораторные по разным языкам программирования
Подробнее - курсовые и лабораторные на заказ по Delphi
Turbo Pascal, Assembler, C, C++, C#, Visual Basic, Java, GPSS, Prolog
2.4.7.3 Исправление одиночных и обнаружение двойных ошибок
Для того, чтобы исправить одиночную ошибку в принятой комбинации из n разрядов, необходимо определить, какой из разрядов был искажён. Это можно сделать в том случае, если каждой одиночной ошибке соответствует свой опознаватель. Так как в циклическом коде опознавателями ошибок являются остатки от деления многочленов на образующий многочлен кода g(x), то g(x) должен обнаруживать требуемое число различных остатков. При степени многочлена m = n – k, он может дать 2n-k – 1 ненулевых остатков (нулевой остаток является опознавателем безошибочной передачи). Необходимым условием исправления одиночной ошибки является выполнение неравенства:

, (2.4.22)

где Сn - общее число разновидностей одиночных ошибок в кодовой комбинации из n символов.
Находим степень образующего многочлена кода:

. (2.4.23)

Образующий многочлен g(x) должен быть делителем двучлена х4 + 1. Допустим, что многочлен типа х2m-1 + 1 = хn + 1 может быть представлен произведением всех неприводимых в матрице многочленов, степени которых являются делителями числа m (от 1 до m включительно). Тогда для любого m существует по крайней мере один неприводимый многочлен степени m, входящий сомножителем в разложение двучлена х4 + 1. Наибольшие значения k и n рассчитываются и сведены в таблицу 2.4:
Таблица 2.4

m 1 2 3 4 5 6 7 8 9 10
n 1 3 7 15 31 63 127 255 511 1023
k 0 1 4 11 26 57 120 247 502 1013

Пример: Выберем образующий многочлен для случая n=15 и m=4. двучлен х15+1 можно записать в виде произведение всех неприводимых многочленов, степени которых являются делителями числа 4(1,2,4).

x+1
x2+x+1
x4+x+1
x4+x3+1
x4+x3+x2+x+1

В таблице неприводимых многочленов находим: один из сомножителей четвёртой степени может быть принят за образующий многочлен кода. Возьмём х4+х3+1, или 11001. Чтобы убедиться, что каждому вектору ошибки соответствует отличный от других остаток, необходимо поделить каждый из этих векторов на 11001. таким образом можно убедиться, что число различных остатков при выбранном g(x) равно 15 и, следовательно, код, образованный таким образом, способен исправить любую одиночную ошибку. однако не все многочлены могут быть использованы в качестве g(x). Некоторые использовать нельзя по той причине, что они могут входить не только в разложения х15+1, но и других двучленов, например: х5+1. таким образом, в качестве образующего следует выбирать такой многочлен g(x), который является делителем двучлена хn+1, но не входит в разложение ни одного двучлена типа х+1, где 
Таблица 2.5

Показатель
неприводимого
многочлена Образующий многочлен Число
остатков Длина
кода
2 х2+х+1 3 3
3 х3+х+1 7 7
3 х3+х2+1 7 7
4 х4+х3+1 15 15
4 х4+х+1 15 15
5 х5+х2+1 31 31
5 х5+х3+1 31 31


Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, залогиньтесь или зарегистрируйтесь для голосования.

Нет данных для оценки.
Гость
Имя

Пароль



Вы не зарегистрированны?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.
Случайные статьи
1. Общий обзор мет...
Исчисление высказ...
Мат в 16 ходов, ил...
Метод решетки
6. Программные про...
Общение
Учимся удалять! [К...
3.1 Основные типы ...
Определение атрибута
Микроэлектроника
Вот что такое «Гео...
«Логик-теоретик»
Оглавление
Характеристики сон...
10.1.2.4 Стратегич...
Независимость данных
Убирайте повторяющ...
Глава 8. Точность ...
«Ты прав, но это ...
СПИСОК ЛИТЕРАТУРЫ
Глава 1. Ноутбук ...
4.2 Распределение ...
Справочная сущность
6.8 УПРАЖНЕНИЯ
8.3.2 Внутренние с...
11.3 ВЗАИМОДЕЙСТВ...
Перепроектирование...
Электронный штурман
TDK XS-iV Tremor M...
Глава 1. MacCentre...
Глоссарий
8.2. Планирование...
11.1 ТРАССИРОВКА П...
4.3. Другие способ...
5.11 STAT И FSTАТ
Пройдусь по Абрико...
TZ GPS
Рекурсивная связь
Существующие метод...
10.1.2 Системные ф...
Мини-чат
Вам необходимо залогиниться.

Нет присланных сообщений.
Copyright © 2009